
Tracking Extrema in Dynamic Environments
using a Coevolutionary Agent-based

Model of Genotype Edition

Chien-Feng Huang
Center for Nonlinear Studies,

Los Alamos National Laboratory, MS B258, Los
Alamos, NM 87544

cfhuang@lanl.gov

Luis M. Rocha
School of Informatics and Cognitive Science

Program,
Indiana University, 1900 East Tenth Street,

Bloomington, IN 47406

rocha@indiana.edu

ABSTRACT
Typical applications of evolutionary optimization in static
environments involve the approximation of the extrema of
functions. For dynamic environments, the interest is not to
locate the extrema but to follow it as closely as possible.
This paper compares the extrema-tracking performance of a
traditional Genetic Algorithm and a coevolutionary agent-
based model of Genotype Editing (ABMGE). This model
is constructed using several genetic editing characteristics
that are gleaned from the RNA editing system as observed
in several organisms. The incorporation of editing mech-
anisms provides a means for artificial agents with genetic
descriptions to gain greater phenotypic plasticity. By allow-
ing the family of editors and the genotypes of agents to co-
evolve using the re-generation of editors as a control switch
for environmental changes, the artificial agents in ABMGE
can discover proper editors to facilitate the tracking of the
extrema in dynamic environments. We will show that this
agent-based model, together with a coevolutionary mecha-
nism, is more adaptive and robust than the GA. We expect
the framework proposed in this paper to advance the current
state of research of Evolutionary Computation in dynamic
environments.

Categories and Subject Descriptors: I.2.11 Distributed
Artificial Intelligence: multiagent systems; I.6.5 Model De-
velopment: modeling methodologies; I.6.8 Types of Simula-
tion: distributed.
General Terms: Algorithms, experimentation, performance.
Keywords: RNA Editing, genotype editing, agent-based
model, coevolution, editing frequency, dynamic environments.

1. INTRODUCTION
Coevolutionary algorithms, methods by which multiple

populations of agents (or species) are adapting to each other,
have been studied in the field of Evolutionary Computation

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

([5]; [12]). They are popular augmentations of traditional
evolutionary algorithms. In nature, coevolution is the pro-
cess of reciprocal genetic change in one species in response to
another. The reciprocal change observed in coevolution can
be considered either as a competitive arms race, or coopera-
tive methodology where separate population evolve compo-
nents of the solution [13].

In essence, the coevolution of multiple populations of agents
collectively acquire the information for the location of the
extrema of static functions. When the function being op-
timized is dynamic, the goal is not to acquire the extrema
but to track their progression through the space as closely
as possible.

This paper compares the extrema-tracking performance of
a traditional Genetic Algorithm and a coevolutionary agent-
based model of Genotype Editing (ABMGE). We have pre-
viously shown that the incorporation of genotype editing
mechanisms provides a means for artificial agents with ge-
netic descriptions to gain greater phenotypic plasticity ([14];
[9]; [10]; [16]). Here we show that, by allowing the family of
editors and the genotypes of agents to co-evolve using the
re-setting of editors as a control switch for environmental
changes, the ABMGE is successful in tracking extrema when
facing dynamic environments. We demonstrate that this
agent-based model, together with a coevolutionary mecha-
nism, is more adaptive and robust than the GA.

The next section discusses the biological background of
RNA editing that lays out the foundation for our model.
We then review a model of Genotype Edition using Genetic
Algorithms and how it is extended to build an agent-based
model of Genotype Editing. This is followed by several non-
trivial dynamic testbeds and the corresponding experimen-
tal results.

2. RNA EDITING
RNA Editing ([4]; [2]), a process of post-transcriptional

alteration of genetic information, can be performed by non-
coding RNA (ncRNA) structures (though it can also be per-
formed by proteins). The term initially referred to the inser-
tion or deletion of particular bases (e.g. uridine), or some
sort of base conversion. Basically, RNA Editing instanti-
ates a non-inheritable stochastic alteration of genes, which is
typically developmentally and/or environmentally regulated
to produce appropriate phenotypical responses at different
stages of development or to states of the environment.

545

Figure 1: U-insertion in Trypanosomes’ RNA

The most famous RNA editing system is that of the African
Trypanosomes [4]. Its genetic material was found to pos-
sess strange sequence features such as genes without trans-
lational initiation and termination codons, frame shifted
genes, etc. Furthermore, observation of mRNA’s showed
that many of them were significantly different from the ge-
netic material from which they had been transcribed. These
facts suggested that mRNA’s were edited post-transcriptionally.
It was later recognized that this editing was performed by
guide RNA’s (gRNA’s) coded mostly by what was previ-
ously thought of as non-functional genetic material [17]. In
this particular genetic system, gRNA’s operate by inserting,
and sometimes deleting, uridines. To appreciate the effect
of this edition let us consider Fig. 1. The first example (p.
14 in [4]) shows a massive uridine insertion (lowercase u’s);
the amino acid sequence that would be obtained prior to any
edition is shown on top of the base sequence, and the amino
acid sequence obtained after edition is shown in the gray
box under the base sequence. The second example shows
how, potentially, the insertion of a single uridine can change
dramatically the amino acid sequence obtained; in this case,
a termination codon is introduced. It is important to retain
that a mRNA molecule can be more or less edited according
to the concentrations of the editing operators it encounters.
Thus, several different proteins coded by the same gene may
coexist in an organism or even a cell, if all (or some) of the
mRNA’s obtained from the same gene, but edited differently,
are meaningful to the translation mechanism.

It is also important to understand that in all cells, prokary-
otic and eukaryotic, RNA is derived from DNA; so , in addi-
tion to editions, alterations in RNA sequences can appear if
the DNA polymerase makes mistakes during the replication
of the DNA or if the RNA polymerase makes mistakes dur-
ing the transcription of the RNA. Note that only alterations
that occur during DNA replication become permanent and
heritable. If mistakes occur during transcription, those mis-
takes get incorporated into that single transcript but not
into other ones. Therefore, it is important to notice that
even though one gene may produce different mRNA’s (and
thus proteins) via editions, mistakes and mutations, the lat-
ter are not allowed heritable variation. What is inheritable,
and subjected to variation, is the original non-edited gene,
which is ultimately selected and transmitted to the offspring
of the organism [14], [15].

The role of RNA editing in the development of more com-
plex organisms has also been shown to be important. Lomeli
et al. [11] discovered that the extent of RNA editing af-
fecting a type of receptor channels responsible for the me-
diation of excitatory postsynaptic currents in the central
nervous system, increases in rat brain development. As a

consequence, the kinetic aspects of these channels differ ac-
cording to the time of their creation in the brain’s develop-
mental process. Another example is that the development
of rats without a gene (ADAR1) known to be involved in
RNA editing, terminates midterm [18]. This showed that
RNA Editing is more prevalent and important than pre-
viously thought. More recently, Hoopengardner et al. [7]
found that RNA editing plays a central role in nervous sys-
tem function. Indeed, many edited sites recode conserved
and functionally important amino acids, some of which may
play a role in nervous system disorders such as epilepsy and
Parkinson Disease.

Although RNA editing seems to play an essential role in
the development of many organisms and more and more
editing mechanisms have been identified, not much has been
advanced to understand the potential evolutionary advan-
tages, if any, that RNA editing processes may have pro-
vided. To acquire insights for answering this question, we
started a systematic study of a Genetic Algorithm with Edi-
tion (GAE) initially proposed by Rocha [14], [15]. Specifi-
cally, we have employed a simple GAE model and reported
some results on how Genotype Editing may provide evolu-
tionary advantages ([9], [10] and [16]). Here, we continue
this study by presenting further results obtained from a
more realistic, co-evolutionary agent-based model of Geno-
type Editing in dynamic environment. Our goal is to gain a
deeper understanding of the nature of RNA editing and ex-
ploit its insights to improve evolutionary computation tools
and their applications to complex dynamic problems. In the
next section, we summarize our prior work in Genetic Algo-
rithms with Genotype Edition and discuss how we build on
this work to produce the agent-based model for Genotype
Edition.

3. EVOLUTIONARY MODELS OF RNA EDIT-
ING USING GENETIC ALGORITHMS

3.1 A Model of Genetic Algorithms with
Genotype Edition

Genetic Algorithms (GA) have been used as computa-
tional models of natural evolutionary systems and as adap-
tive algorithms for solving optimization problems. GA op-
erate on an evolving population of artificial organisms, or
agents. Each agent is comprised of a genotype (encoding
a solution to some problem) and a phenotype (the solution
itself). Evolution occurs by iterated stochastic variation of
genotypes, and selection of the best phenotypes in an envi-
ronment according to how well the respective solution solves
a problem (or fitness function). Table 1 depicts the process
of a simple genetic algorithm.

In machine learning, the phenotype is a candidate solution
to some optimization problem, while the genotype is an en-
coding, or description, of that solution by means of a domain
independent representation, namely, binary symbol strings
(or chromosomes). In traditional GAs, this code between
genotype and phenotype is a direct and unique mapping. In
biological genetic systems, however, there exists a multitude
of processes, taking place between the transcription of genes
and their expression, responsible for the establishment of a
one-to-many relation between genotype and phenotype.

In a genetic system with RNA editing, before a gene
is translated into the space of proteins it may be altered

546

Table 1: Mechanism of a simple GA.
1. Randomly generate an initial population of l agents,

each being an n-bit genotype (chromosome).
2. Evaluate each agent’s fitness.
3. Repeat until l offspring have been created.

a. select a pair of parents for mating;
b. apply crossover operator;
c. apply mutation operator.

4. Replace the current population with the new
population.

5. Go to Step 2 until terminating condition.

through interactions with other types of molecules, namely
RNA editors such as gRNA’s. Based upon this analogy,
Rocha ([14]; [15]) proposed an expanded framework of GA
with a process of stochastic edition of the genotypes (chro-
mosomes) of agents, prior to being translated into solutions.
The editing process is implemented by a set of editors with
different editing functions, such as insertion, deletion or sub-
stitution of symbols in the original chromosomes. Before
these descriptions can be translated into the space of solu-
tions, they must “pass” through successive layers of editors,
present in different concentrations. In each generation, each
chromosome has a certain probability (given by the concen-
trations) of encountering an editor in its layer. If an editor
matches some subsequence of the chromosome when they
encounter each other, the editor’s function is applied and
the chromosome is altered. The implementation of a GA
with Edition (GAE) is described in the following:

The GAE model consists of a family of r m-bit strings,
denoted as (E1, E2, . . . , Er), that is used as the set of editors
for the chromosomes of the agents in a GA population. The
length of the editor strings is assumed much smaller than
that of the chromosomes: m << n, usually an order of
magnitude. An editor Ej is said to match a substring, of
size m, of a chromosome, S, at position k if ei = sk+i, i =
1, 2, . . . , m, 1 ≤ k ≤ n−m, where ei and si denote the ith bit
value of Ej and S, respectively. For each editor, Ej , there
exists an associated editing function, Fj , that specifies how a
particular editor edits the chromosomes. For instance, when
the editor matches a portion of a chromosome, a number
of bits are inserted into or deleted from the chromosome.
In Rocha’s formulation ([14]; [15]), any string function is
possible, including substitution. Here we use only insertion
and deletion functions.

If the editing function of editor Ej is to add one specific
allele at sk+m+1 when Ej matches S at position k, then all
alleles of S from position k + m + 1 to n− 1 are shifted one
position to the right (the allele at position n is removed).
Analogously, if the editing function of editor Ej is to delete
an allele, an allele at sk+m+1 is deleted when Ej matches
S at position k. All the alleles after position k + m + 1
are shifted in the inverse direction (one randomly generated
allele is assigned at position n).

Finally, let the concentration of the editor family be de-
fined by (v1, v2, . . . , vr); i.e., the concentration of editor Ej

is denoted as vj . Then the probability that S encounters Ej

is given by vj . Figure 2 depicts the whole process of this
model. With these settings, the algorithm for the GA with
Genotype Edition is essentially the same as the regular GA,
except that step 2 in Table 1 is now redefined as:

“For each chromosome in the GA population, apply each
editor Ej with probability vj (i.e., concentration). If Ej

matches the individual’s chromosome S, then edit S with
the editing function associated with Ej and evaluate the
resulting individual’s fitness.”

Figure 2: Schematic of GAE

It is important to note that the “post-transcriptional” edi-
tion of genotypes is not a process akin to mutation, because
editions are not inheritable. Just like in biological systems,
it is the unedited genotype that is reproduced. As a re-
sult, what is being reproduced in our model is the unedited
genotypes, but each individual’s fitness is calculated using
the phenotype produced from its edited genotype. There-
fore, the unedited and edited genotypes can be viewed as
mimicking functional DNA and edited coding mRNA in bi-
ological organisms, respectively, though our model does not
include a true DNA/RNA distinction.

One can also notice that this Genotype Editing model is
not a process akin to the Baldwin effect as studied by, e.g.,
Hinton and Nowlan [6]. The phenotypes of our agents with
genotype edition, do not change (or learn) ontogenetically.
In Hinton and Nowlan’s experiments, the environment is
defined by a very difficult (“needle in a haystack”) fitness
function, which can be made more amenable to evolutionary
search by endowing the phenotypes to “learn” ontogeneti-
cally. Eventually, they observed, this learning allows genetic
variation to discover, and genetically encode fit individuals.
In contrast, genotype edition does not grant agents more
“ontogenetic learning time”; it simply changes inherited ge-
netic information ontogenetically but the phenotype, once
produced, is fixed.

It is also important to retain that just like an mRNA
molecule may be edited in different degrees according to
the concentrations of editing operators it encounters, in the
GAE the same chromosome may be edited differently be-
cause the editor concentration is a stochastic parameter that
specifies the probability of a given editor encountering a
chromosome. Thus, if the same genotype is repeated in the
population, it may actually produce different solutions (or
phenotypes). This is similar to what happens with RNA
editing in biological organisms where, at the same time, sev-
eral different proteins coded by the same gene may coexist.

547

Table 2: Mechanism of ABMGE.

1. Randomly generate an initial agent population, each
agent consisting of a n-bit chromosome and
a family of editors.

2. Edit each agent’s chromosome using the agent’s editor
family and evaluate each agent’s fitness.

3. Repeat until l offspring have been created.
a. select a pair of parents for mating;
b. apply genotype crossover operator;
c. apply genotype mutation operator.

4. Replace the current population with the new population.
5. Go to Step 2 until terminating condition.

3.2 A Coevolutionary Agent-based Model of
Genotype Edition

In this paper, we discuss an extended version of the GAE
using a more realistic co-evolutionary agent model as pro-
posed in [16]. Whereas the GAE model defines a single
family of editors for the entire population, the agent-based
model we introduce here allows for heterogeneous agents,
each with a distinct editor family. Therefore, instead of
every chromosome encountering the same editors with the
same probability, in the agent-based model of Genotype
Editing (ABMGE) the genotype of each agent is edited by
its own editor family. Figure 3 depicts an agent in the AB-
MGE model.

Figure 3: Schematic of an agent in ABMGE

Table 2 shows the algorithm for the ABMGE. In this
model, the sequences of editors in the editor family for each
agent, once generated, are fixed. Variation operations are
applied to the agent’s genotypes (step 3.b and 3.c).

One way to highlight the difference between the two mod-
els is to notice that in the GAE model, there are essentially
two separate populations: an evolving population of geno-
type strings and a fixed, small, editor population (family).
Moreover, in the simple GAE the entire population of agents
faces exactly the same “post-transcriptional” editors. In
contrast, in the ABMGE model, the evolving agents face
heterogenous post-transcriptional editors. As fit agents are
selected for reproduction, their editor families propagate to
the next generation.

In static and dynamic environments the results in [9],
[10] and [16] have demonstrated how genotype editing with

Table 3: Small royal road function L1
s1 = 11111***********************************; c1 = 10
s2 = *****11111******************************; c2 = 10
s3 = **********11111*************************; c3 = 10
s4 = ***************11111********************; c4 = 10
s5 = ********************11111***************; c5 = 10
s6 = *************************11111**********; c6 = 10
s7 = ******************************11111*****; c7 = 10
s8 = ***********************************11111; c8 = 10

an homogenous editor family, as implemented in the GAE
model, can improve the standard GA search performance.
It was shown that editing frequency (the total number of
times all editors edited chromosomes in a generation) plays
a critical role in the evolutionary advantage provided by the
editors: only a moderate degree of editing processes facili-
tates the exploration of the search space. Those results also
indicate that, as the population of individuals converges to
a single phenotype (or a few phenotypes), editing frequency
may dramatically decrease so that the editing process ulti-
mately comes to an end.

In this paper, we will further show that a significant drop
of the editing frequency may also occur when the editors
do not play a beneficial role in the agents’ adaption to the
changing environments, indicating that the editors being
evolved with the population are not able to offer adaptive
advantage when the population continues to face consider-
able changes in environments. As a result, by allowing the
family of editors and the genotypes of agents to co-evolve
using the re-setting of editors as a control switch for en-
vironmental changes, the ABMGE is successful in tracking
extrema in dynamic environments. We demonstrate that
this agent-based model, together with this coevolutionary
mechanism, is more adaptive and robust than the GA.

4. EMPIRICAL RESULTS

4.1 Oscillatory Royal Road Functions
How rapid is evolutionary change, and what determines

the rates, patterns, and causes of change, or lack thereof?
Answers to these questions can tell us much about the evo-
lutionary process. The study of evolutionary rate in the
context of GA usually involves defining a performance mea-
sure that embodies the idea of rate of improvement, so that
its change over time can be monitored for investigation. In
many practical problems, a traditional performance measure
is the “best-so-far” curve that plots the fitness of the best
individual that has been seen thus far by generation n.1 As
a step towards the understanding of how the coevolution-
ary ABMGE works, an oscillatory Royal Road function is
studied, which is an oscillatory version of the simple “Royal
Road” L1 function used in [9].

Table 3 illustrates the schematic of the small Royal Road
function L1. This function involves a set of schemata S =
{s1, . . . , s8} and the fitness of a genotype bit string (chro-
mosome) x is defined as F (x) =

∑
s∈S csσs(x), where each

1The best-so-far measurement commonly used in stationary
environments is problematic in dynamic environments since
it has to be assured that the best solution found thus far is
the best solution for the current environment. Therefore, the
best-so-far solution will be re-evaluated whenever a change
in the environment occurs.

548

cs is a value assigned to the schema s as defined in the table;
σs(x) is defined as 1 if x is an instance of s and 0 otherwise.
In this function, the fitness of the global optimum string
(40 1’s) is 10 × 8 = 80. The oscillatory royal road function
consists of two fitness landscapes, L0 and L1, in which each
schema is comprised of all 0’s in L0 and the other parame-
ters remain the same as used in L1. These two landscapes
are maximally different in the configurations of their fitness
landscapes. By oscillating these two landscapes, we are able
to study the effects of drastic environmental changes.

We conduct 100 runs for the GA and the ABMGE. The
GA experiments conducted in this section are based on a
binary tournament selection, one-point crossover and muta-
tion rates of 0.7 and 0.005, respectively; population size is
100 for each of the GA and ABMGE run. For the ABMGE,
an editor family is randomly generated for each agent.2 Ta-
ble 4 shows the parameters of an example editor family with
two editors: length, alleles, concentration and editing func-
tion. For example, editor 1 is a bit-string of length 5 (01011);
its concentration, or the probability that the agent’s geno-
type string will encounter this editor is 0.9073; its editing
function is to delete 1 bit, meaning that this editor deletes
one allele of the genotype string at the position following the
genotype’s substring that matches the editor’s string. The
ultimate goal of the ABMGE is to facilitate the discovery of
beneficial family of editors for each agent.

Table 4: Parameters for an example editor family.
editor 1 editor 2

length 5 3
alleles {0,1,0,1,1} {0,1,0}

concentration 0.9073 0.2691
function delete 1 bit add {1,1,0}

Consider now a dynamic environment which oscillates pe-
riodically between the landscapes L1 and L0. This oscilla-
tion models an environment with recurring dramatic changes
in conditions. Figure 4 displays the results of the GA and
ABMGE (without re-setting the families of editors) using
the oscillation of landscapes L1 and L0, at every 250 gen-
erations, As can be seen, the population of the ABMGE
can better track the extrema in the first 500 generations
(the first two oscillatory periods), but fails to outperform
the GA after that.3 Further inspection of the corresponding
editing frequency in Figure 5 indeed shows a significant drop
of the editing frequency, thereby indicating that the editors
do not play a beneficial role in the agents’ adaption to the
changing environments after the first few oscillations of the
fitness function. This shows that the editors being evolved
with the population are not able to offer adaptive advan-

2The size of the editor family ranges from {1,5}. Each editor
is a randomized bit-string of a randomly chosen number of
bits from {2,5}. The editor concentration is randomly gen-
erated from [0,1]; and the editor function inserts or deletes
a randomly chosen number of bits from {1,3}. (See [10] for
the guidelines concerning choosing these parameters of the
editors.)
3The value of the averaged best-so-far performance metric
is calculated by averaging the best-so-fars obtained at each
generation for all 100 runs, where the vertical bars overlaying
the metric curves represent the 95-percent confidence inter-
vals. This applies to all the experimental results obtained
in this paper.

tage when continuing to face several rounds of the drastic
environmental changes.

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

 fi
tn

es
s

Oscillating period = 250 generations

<−−−− L1 −−−−><−−−− L0 −−−−><−−−− L1 −−−−><−−−− L0 −−−−><−−−− L1 −−−−><−−−− L0 −−−−>

GA
ABMGE

Figure 4: Averaged best-so-far performance on the
oscillating Royal Road function of the GA and the
ABMGE.

200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

3000

3500

4000

Generation

Av
er

ag
ed

 E
di

tin
g

Fr
eq

ue
nc

y

Oscillating period = 250 generations

<−−−− L1 −−−−><−−−− L0 −−−−><−−−− L1 −−−−><−−−− L0 −−−−><−−−− L1 −−−−><−−−− L0 −−−−>

Figure 5: Editing frequency of the ABMGE on the
oscillatory Royal Road function.

One can therefore consider to allow the family of edi-
tors and the genotypes of agents to co-evolve using the re-
generation of editors as a control switch, so that the artificial
agents in ABMGE can discover proper editors to facilitate
the tracking of the extrema. That is, when the population
detects a significant decline of the editing frequency, new
families of editors are randomly re-generated, with the goal
of discovering beneficial editors.

Figure 6 shows the best-so-far performance when the edit-
ing frequency is being reset whenever its values drop below
50 (this number is arbitrarily chosen for illustration, based
on the heuristic of it being 10 times of the maximum number
of editors in an agent, which is 5.) The results displayed in
Figure 6 shows significant improvement for the ABMGE in
following the extrema.

4.2 Dynamic Schaffer FunctionF7

The preceding subsection discusses our study of the AB-
MGE in a drastic changing environment. The degree of the
changes in an environment has been studied in EC research

549

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

 fi
tn

es
s

Oscillating period = 250 generations

<−−−− L1 −−−−><−−−− L0 −−−−><−−−− L1 −−−−><−−−− L0 −−−−><−−−− L1 −−−−><−−−− L0 −−−−>

GA
ABMGE

Figure 6: Best-so-far performance on the oscillatory
Royal Road function of the GA and the coevolution-
ary ABMGE.

– how strongly the system changing is and how severe this
change is going to constrain the search of an algorithm?
Angeline [1], Bäck [3] reported a study of dynamic problems
with three different modes of severity of changes: linear,
circular, and random. In this subsection, with s represent-
ing a parameter to set the severity, one illustration can be
described by:

f(X) = 2.5− (X2
1 + X2

2)0.25[sin2(50(X2
1 + X2

2)0.1) + 1],

where Xi = xi + δ(t), −1 ≤ xi ≤ 1 for i = 1, 2.
This testbed is a dynamic version of the modified Schaf-

fer’s function F7 studied in [8]. A sketch of the original static
function is displayed in Figure 7. X and Y-axis represent the
index of the sample points in parameters x1 and x2 that are
used to compute f(x), which is then represented on Z-axis.

The example uses linear dynamics with severity s of 0.1:

δ(0) = 0,

δ(T) = δ(T − 1) + s. (1)

Note that T is used as index for the environmental state;
whenever the environment changes (e.g., every 50 genera-
tions in this subsection), T is increased by 1. This equation
will be used for the dynamic test function studied in the
next subsection, as well.

In this subsection, the same GA parameters at in the pre-
ceding subsection are used. For the ABMGE, the settings
of the editor parameters are: the size of the family of the
editors for each agent ranges from {1, 10} and other editor
parameters remain the same as those employed in the pre-
ceding subsection. (We use a larger size of family of editors
here since our results show that as the complexity of the
problem increases, a larger size of editor family is required
to offer adaptive advantage to the system.) The editing
frequency is required to be reset whenever its values drop
below 100 (this number is chosen based on the heuristic of
it being 10 times of the maximum number of editors in an
agent, which is 10.) Figure 8 displays the averaged best-so-
far performance for this dynamic problem. These results are
encouraging since the coevolutionary ABMGE consistently
outperforms the traditional GA in tracking the extrema.

20
40

60
80

100
X 20

40
60

80
100

Y

-40

-20

0

20

40

Z

20
40

60
80X

Figure 7: A sketch of the Schaffer Function F7.

50 100 150 200 250 300 350
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Update frequency = 50 generations (severity = 0.1)

GA
ABMGE

Figure 8: Best-so-far performance of the GA and
the coevolutionary ABMGE on the linear dynamic
Schaffer function (severity = .1).

4.3 Dynamic Optimal Control Testbed
Optimal Control problems often arise in many different

fields of engineering and sciences. This class of problems has
been well studied from both theoretical and computational
perspectives. The models used to describe optimal control
problems almost always involve more or less nonlinearity in
nature. This often results in the existence of multiple local
optima in the area of interest.

In this subsection we employ an artificial optimal control
problem designed in [8]. The constraints of the artificial
optimal control problem are:

d2z(t)

dt2
+ sin(z(t))

dz(t)

dt
+ sin(t)cos(z(t))z(t)3

= sin(t)u2
1 + cos(t)u2

2 + sin(t)u1u2,

z(t0) = 2, ż(t0) = 2, t ∈ [0, 1],

where Ui = ui + δ(T), −1 ≤ ui ≤ 1 for i = 1, 2.
Two examples are studied in this subsection that use lin-

ear dynamics with severity s of 0.1 and 1 according to Equa-
tion (1), respectively.

The goal is to maximize z(tf)2 by searching for two control
variables, u1 and u2 (−5 ≤ u1, u2 ≤ 5). A sketch of this
dynamic function for δ = 0, 3, 7 are illustrated on Figure 9,
10 and 11, respectively. X and Y axes represent the index
of sample points in parameters u1 and u2 that are used to

550

delta=0

20
40

60

80

100

X
20

40

60

80

100

Y

0
50

100
150
200
250

Z

20
40

60

80X

Figure 9: Schematic of the linear dynamic optimal
control testbed (delta = 0).

delta=3

20
40

60

80

100

X
20

40

60

80

100

Y

0
50

100
150
200
250

Z

20
40

60

80X

Figure 10: Schematic of the linear dynamic optimal
control testbed (delta = 3).

compute z(tf)2, which is then plotted on Z-axis.
In this subsection, each of the two variables is encoded

by 50 bits, and thus each individual is a binary string of
length 100. We again contrast the traditional GA with a
coevolutionary ABMGE with the same parameters as those
used for the Schaffer dynamic function.

Figure 12 and 13 display the averaged best-so-far per-
formance for severity = .1 and 1, respectively, which shows
that the editors provide adaptive advantage for the ABMGE
in tracking the extrema of the search space. Along with
the results obtained for the previous testbeds, we have been
able to show that the coevolutionary ABMGE can be more

delta=7

20
40

60

80

100

X
20

40

60

80

100

Y

0
50

100
150
200
250

Z

20
40

60

80X

Figure 11: Schematic of the linear dynamic optimal
control testbed (delta = 7).

adaptive than the traditional GA when facing dynamic en-
vironments.

50 100 150 200 250 300 350
0

20

40

60

80

100

120

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Update frequency = 50 generations (severity = 0.1)

GA
ABMGE

Figure 12: Best-so-far performance of the GA and
the coevolutionary ABMGE on the linear dynamic
optimal control testbed (severity = .1).

50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

200

Generation

Av
er

ag
ed

 b
es

t−
so

−f
ar

s

Update frequency = 50 generations (severity = 1)

GA
ABMGE

Figure 13: Best-so-far performance of the GA and
the coevolutionary ABMGE on the linear dynamic
optimal control testbed (severity = 1).

5. CONCLUSION AND FUTURE WORK
This paper presents a comparative study of traditional GA

and a coevolutionary agent-based model of Genotype Edit-
ing for dynamic environment. This genotype edition model
is constructed using several genetic editing characteristics
that are gleaned from the RNA editing system as observed
in several organisms. The incorporation of editing mech-
anisms provides a means for artificial agents with genetic
descriptions to gain greater phenotypic plasticity. By using
the re-generation of editors (based on levels of editing fre-
quency) as a control switch for environmental changes, the
artificial agents with heterogeneous genotype edition in AB-
MGE can discover proper editors to facilitate the tracking of
the extrema. When facing several non-trivial dynamic prob-
lems, the results show that this agent-based model, along
with a coevolutionary mechanism, is more adaptive than
the traditional GA.

551

There are other ways to introduce coevolution in the AB-
MGE systems. In our future work, we will study the effects
of using other editor parameters as a coevolutionary mech-
anism. For example, mutation on editors, change of editors’
function, or crossing-over between editors can cause the fam-
ily of editors to coevolve with the genotype population. We
expect that the framework proposed here can advance the
current state of research of Evolutionary Computation in
dynamic environments.

6. REFERENCES
[1] P. J. Angeline. Tracking extrema in dynamic

environments. In Proceedings of the Sixth
International Conference on Evolutionary
Programming, pages 335–345, 1997.

[2] B. Bass. RNA Editing. Frontiers in Molecular Biology
Series. Oxford University Press, 2001.

[3] T. Bäck. On the behavior evolutionary algorithms in
dynamic environments. In IEEE International
Conference on Evolutionary Computation, pages
446–451, 1998.

[4] R. Benne. RNA Editing: The Alteration of Protein
Coding Sequences of RNA. Ellis Horwood, 1993.

[5] S. Ficici and J. B. Pollack. A game-theoretic memory
mechanism for ecevolution. In Proc. of 2003 Genetic
and Evolutionary Computation Conference, pages
286–297, 2003.

[6] G. E. Hinton and S. J. Nowlan. How learning can
guide evolution. Complex Systems, 1:495–502, 1987.

[7] B. Hoopengardner, T. Bhalla, C. Staber, and
R. Reenan. Nervous system targets of rna editing
identified by comparative genomics. Science,
301(5497):832–836, 2003.

[8] C.-F. Huang. A Study of Mate Selection in Genetic
Algorithms. Doctoral dissertation. Ann Arbor, MI:
University of Michigan, Electrical Engineering and
Computer Science., 2002.

[9] C.-F. Huang and L. M. Rocha. Exploration of rna
editing and design of robust genetic algorithms. In
Proceedings of the 2003 IEEE Congress on
Evolutionary Computation, pages 2799–2806. IEEE
Presss, 2003.

[10] C.-F. Huang and L. M. Rocha. A systematic study of
genetic algorithms with genotype editing. In Proc. of
2004 Genetic and Evolutionary Computation
Conference, volume 1, pages 1233–1245, 2004.

[11] H. Lomeli et al. Control of kinetic properties of ampa
receptor channels by rna editing. Science,
266:1709–1713, 1994.

[12] L. Panait, R. P. Wiegand, and S. Luke. A sensitivity
analysis of a cooperative coevolutionary algorithm
biased for optimization. In Proc. of 2004 Genetic and
Evolutionary Computation Conference, volume 1,
pages 573–584, 2004.

[13] M. Potter and K. De Jong. Cooperative coevolution:
An architecture for evolving coadapted
subcomponents. Evolutionary Computation Journal
8(1):1–29, 2000.

[14] L. M. Rocha. Contextual genetic algorithms: Evolving
developmental rules. Advances in Artificial Life, pages
368–382, 1995.

[15] L. M. Rocha. Evidence Sets and Contextual Genetic
Algorithms: Exploring Uncertainty, Context and
Embodiment in Cognitive and biological Systems. PhD.
Dissertation. State University of New York at
Binghamton., 1997.

[16] L. M. Rocha and C.-F. Huang. The role of rna editing
in dynamic environments. In The Ninth International
Conference on the Simulation and Synthesis of Living
Systems (ALIFE9), MIT press, pages 489–494, 2004.

[17] N. R. Sturn and L. Simpson. Kinetoplast dna
minicircles encode guide rna’s for editing of
cytochrome oxidase subunit iii mrna. Cell, 61:879–884,
1990.

[18] Q. Wang, J. Khillan, P. Gadue, and K. Nishikura.
Requirement of the rna editing deaminase adar1 gene
for embryonic erythropoiesis. Science,
290(5497):1765–1768, 2000.

552

